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Abstract 
Classical statistical models can solve the problem of portfolio optimization and can determine the 
efficient frontier of investment when there are few investable assets and constraints. But these models 
cannot easily solve optimization problems when we consider real-world constraints. Therefore, data 
mining techniques such as evolutionary algorithms are important in portfolio optimization. The purpose 
of the present research was to solve the mean-variance cardinality constrained portfolio optimization 

(MVCCPO) problem using 𝜖-MOEA. Thus, optimal portfolios were created using the monthly returns 
data of 185 companies listed in Tehran Stock Exchange (TSE) during the period 2009-2010 and the 

performance of these companies were evaluated. The results showed that 𝜖-erorr multi-objective 

evolutionary algorithm (𝜖-MOEA) can successfully solve the optimization problem.  
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1. Introduction 

The original security portfolio was introduced by 
Harry Markowitz in 1952 [1]. Investors before him 
were familiar with the concepts of risk and returns, 
but were unable to measure them; Markowitz was 
the first to propose the role of portfolios in creating 
variability. Since investors are not sure of the 
future, they diversify their investments to reduce 
risks. Markowitz showed quantitatively how and 
why portfolio diversification can reduce the overall 
investment risk. His mean-variance model of 
portfolio selection picks securities on the basis of 
expected returns and risk, where risk is the 
standard deviation of returns and return is the 
weighted combination of assets' returns [2] 
(Markowitz, 1959). 

 
* Corresponding Author Email: iran8878@yahoo.com 

It must be noted that Markowitz’s standard model 
does not have constraints for the number of assets 
as well as the upper and lower bounds of each asset 
in the portfolio. Chang et al. (2000) have applied a 
revised version of Markowitz model called mean-
variance cardinality constrained portfolio 
optimization model (MVCCPO) that accounted for 
these constraints [3]. Alexander and Alexander 
(2001) examined the economic implications of 
using a mean-VaR model for portfolio selection and 
compared this model with mean-variance analysis 
[4]. They first assumed that returns follows the 
normal distribution and then generalized the 
results to non-normal returns. Hanne (2007) 
examined genetic representations and crossover 
operators in an evolutionary algorithm and showed 
that a hybrid coding (which includes binary and 
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real values) is the most appropriate coding for the 
mean-variance cardinality constrained model [5].  
Abdelaziz et al., (2005) proposed a chance 
constrained compromise programming model for 
portfolio selection which was, in fact, a combination 
of compromise programming and chance 
constrained programming models [6]. Ehrgott et al., 
(2004) used the multi-criteria decision making 
approach for portfolio optimization [7]. Multi-
objective optimization methods that use genetic 
algorithms are used for generating efficient 
frontiers with two or three objective functions. Best 
and Hlouskova (2006) incorporated transaction 
costs in the process of portfolio optimization using 
quadratic programming [8].  
Yu (2011) did an experimental research on 
portfolio optimization problem using known 
algorithms [9]. They found that Strength Pareto 
Evolutionary Algorithm 2nd version (SPEA2) 
performs the best for comparatively small number 
of generations. Roy (1952) defined risk as the 
probability of an adverse outcome [10]. Recently, 
Huang (2008) proposed a new definition of risk 
based on Roy's definition where for each adverse 
outcome a probability is considered and risk is no 
longer a single value, but a curve [11]. Lin and Ko 
(2009) used a genetic algorithm to extract the best 
portfolio set and the most suitable peak threshold 
in order to estimate the portfolio's value-at-risk 
(VaR) by means of extreme value theory (EVT) [12]. 
Anagnostopoulos (2011) and consider another 
form of the MVCCPO model where the cardinality 
constraint becomes an objective function to be 
minimized [13] (cited in Anagnostopoulos and 
Mamanis, 2011).  

2. Portfolio Optimization Problem 

The modern portfolio theory was first introduced 
by Markowitz (1952) [1]. This theory, also known 
as the mean-variance model, was so important that 
brought him the Nobel Memorial Prize in Economic 
Sciences. In his portfolio selection theory, he argued 
that investors select their portfolios based on risk 
and returns and proposed a mathematical model 
for optimal portfolio selection. According to this 
model, investors try to select a portfolio that gives 
maximum return for a given risk, or minimum risk 
for given return. Using Markowitz model, we can 
create a portfolio of financial assets to minimize 
risk for a given level of return. Identifying the 
efficient frontier of portfolios allows investors to 
earn the highest expected return for a given level of 
risk based on utility function and their degree of 
risk-taking. Based on their degree of risk-aversion 
or risk-seeking, each investor selects a point on the 
efficient frontier and determines their portfolio 
aiming to maximize return and minimize risk [14]. 
The Markowitz model expanded over the years by 
adding real-world constraints such as cardinality 

constraint which is a constraint on the number of 
assets in each portfolio and quantitative constraints 
that limit the weight of each asset in the portfolio so 
as to lie between upper and lower bounds. This 
model, i.e. mean-variance cardinality constrained 
portfolio optimization model, can overcome 
optimization challenges and concerns.  
These constraints show the decision making 
process and portfolio selection when managers 
wish to have a portfolio with a relatively small 
number of assets as compared to the assets 
available in financial market so as to facilitate 
management and control for transaction costs. 
From a computational perspective, these 
constraints introduce integer variables into the 
problem, making it a discrete, non-linear, multi-
objective optimization problem which is quite 
difficult to solve.  
According to Deng et al., (2012), the mean-variance 
cardinality constrained model is formulated as 
follows [15]: 
 

min 𝑝(𝑥) = ∑ ∑ 𝑥𝑖𝑥𝑗𝛿𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

max 𝜇(𝑥) = ∑ 𝑥𝑖𝜇𝑖

𝑛

𝑖=1

 

s.t 
 

∑ 𝑥𝑖

𝑛

𝑖=1

= 1 .  

∑ 𝛿𝑖

𝑛

𝑖=1

≤ 𝑘 .  

 

𝑙𝑖𝛿𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝛿𝑖    𝑖 = 1. … . 𝑛 
 

𝛿𝑖 ∈ {0 . 1}. 𝑖 = 1. … . 𝑛 
 

𝑁 is the number of assets for investment, 𝛿𝑖𝑗 is the 

covariance of asset 𝑖. 𝑗, 𝑥𝑖 is a decision variable that 
shows th weight of each asset and takes a value 
between zero and one (0 ≤ 𝑥𝑖 ≤ 1), 𝐾 is the 
maximum number of assets in the portfolio, 𝜇(𝑥) is 
the expected return of the portfolio, 𝜌(𝑥) is the 
portfolio variance, 𝑙𝑖 and 𝑢𝑖 are the lower and upper 
bounds of variable 𝑖, and 𝛿𝑖 is an investment 
decision variable in each stock. If 𝛿𝑖 equals 1, asset 
𝑖 is placed in the portfolio.    
Problem constraints 
• First constraint: The sum of ratios (weights) 

equals 1. 

• Second constraint: There are exactly 𝑘 assets in 
the portfolio. 

• Third constraint: If an asset is placed in the 
portfolio then 𝛿𝑖 = 1 and its weight lies between 
𝑙𝑖 and 𝑢𝑖; if the assets is. not placed in the 
portfolio then 𝛿𝑖 = 0 and its weight will be zero.  

By fitting the above model, the dual-objective 
function becomes a single-objective function. 
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min 𝜆 ∑ ∑ 𝑥𝑖𝑥𝑗𝛿𝑖𝑗 − (1 − 𝜆) ∑ 𝑥𝑖𝜇𝑖

𝑛

𝑖=1

𝑛

𝑗=1

𝑛
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𝜆 is a parameter whose value lies between 0 and 1. 
When 𝜆 equals 0, the entire weight coefficient is 
given to return and when it equals 1, the entire 
weight coefficient is given to risk. Regardless of 
returns, a portfolio with the minimum risk is 
selected. In the interval between 0 and 1, only those 
portfolios with optimal risk and return levels are 
selected. 
Solving the portfolio optimization problem leads to 
a curve similar to the following figure considering 
different returns and optimal weights.  

 

Figure 1. Efficient frontier of investment. 
 

The overall framework of the research can be 
summarized in the following model. 
 

 
Figure 2. The proposed problem-solving framework. 

3.𝝐-MOEA algorithm 

Here we use 𝜖-dominated multi-objective 
evolutionary algorithm which was introduced by 
Deb (2001) [16]. The search space is divided into a 
number of grids (or hyper-boxes) and diversity is 
maintained by ensuring that a grid or hyper-box 

can be occupied with only one solution. In this type 
of MOEA, there are two co-evolving populations: 
the EA population P(t) and the archive population 
E(t) (where 𝑡 is the iteration counter) as shown in 
Figure 4. MOEA starts with an initial population 
P(0). The archive population E(0) stores the non-
dominated solutions. Then, two solutions are 
selected from each population for mating. To select 
a solution from P(t), two members of the parent 
population are randomly selected and a domination 
check (in the usual sense) is made (As shown in the 
left side of Figure 3 for minimization of the 
objective function).     
If one solution dominates the other, the former is 
selected. Otherwise, the two solutions are non-
dominated to each other and we simply choose one 
of the solutions at random. We denote the chosen 
solution with 𝑝. To select the solution 𝑒 from E(t), 
several strategies involving a certain relationship 
with 𝑝 can be made. However, here we randomly 
take a solution from E(t). After this selection phase, 
solutions 𝑝 and 𝑒 are mated to create 𝜆 offspring 
solutions (𝑐𝑖 . 𝑖 = 1.2. … . 𝜆). We displayed the 
instance 𝜆 = 1 in the figure and used this value in 
all the simulations with 𝜖-MOEA in this article. Now, 
each of these offspring solutions is compared with 
the archive and the EA population for their possible 
inclusion. For inclusion in the archive, the offspring 

𝑐𝑖  is compared with each member in the archive for 

𝜖-dominance.  Every solution in the archive is 
assigned an identification array (𝐵) as follows:  
 

𝐵𝑗(f) = {
⌊
𝑓𝑗 − 𝑓𝑗

min 

𝜖𝑗⌋
.             for minimizing 𝑓𝑗 .

⌈(𝑓𝑗 − 𝑓𝑗
min )/𝜖𝑗⌋.             for minimizing 𝑓𝑗 .

 

 

where 𝑓𝑗
min is the minimum possible value of the 𝑗-

th objective and 𝜖𝑗 is the allowable tolerance in the 

𝑗-th objective beyond which two values are 
significant to the user. This 𝜖𝑗 value is similar to the 

𝜖 used in the 𝜖-dominance definition. The 
identification arrays make the whole search space 

into grids having 𝜖𝑗  size in the 𝑗-th objective.  
  

 

Figure 3. 𝜖-MOEA procedure, the minimization of an 
objective function is assumed in showing the dominated 

regions. 
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Figure 4 shows that the solution P 𝜖-dominates the 
entire region ABCDA (in the minimization sense), 
while the original dominance definition allows P to 
dominate only the region PECFP.  
 

 

Figure 4. The 𝜖-dominance concept (for minimizing 𝑓1 
and 𝑓2). 

 

For the sake of brevity, the rest of the discussion is 
only limited to minimization instances. However, a 
similar analysis can be done for maximization or 
mixed instances as well. The identification array of 
P is the coordinate of point A in the search space. 
With the identification arrays calculated for 
offspring 𝑐𝑖 and each archive member 𝑎, we use the 
following procedure. If the identification array B𝑎 of 
any archive member 𝑎 dominates that of offspring 
𝑐𝑖, it means that the offspring is 𝜖-dominated by the 
archive member and the offspring is not accepted. 
However, if B𝑐 of the offspring dominates B𝑎 of any 
archive member 𝑎, those archive members are 
deleted and the offspring is accepted. If neither of 
the above cases happens, it means that the offspring 
is 𝜖-non-dominated with the archive members. If 
the offspring dominates the archive member or if 
the offspring is non-dominated to the archive 
member but is closer to the B vector than the 
archive member (in terms of the Euclidean 
distance), the offspring is retained. In case an 
offspring does not share the same B vector with any 
archive member, the offspring is accepted. 
Interestingly, the former condition ensures that 
only one solution with a distinct B vector exists in 
each hyper-box, that is, each hyper-box on the 
Pareto-optimal front can be occupied by exactly one 
solution, thereby providing two properties: (1) 
well-distributed solutions are retained, and (2) the 
archive size will be bound. Therefore, no specific 
upper limit needs to be set on the archive size. The 
archive will be bounded according to the chosen 𝜖-
vector. The decision whether or not an offspring 
will replace any population member can be made 
using different strategies. Here, we compare each 
offspring with all population members. If the 
offspring dominates any population member, it 
replaces the member. However, if any population 
member dominates the offspring, it is not accepted. 
When both the above tests fail, the offspring 
replaces a randomly selected population member. 
This ensures that the EA population remains 
unchanged. This procedure is continued for a 

specific number of iterations and the final members 
of the archive are reported as the obtained 
solutions. The proposed algorithm has the 
following properties: 
 
1. It is a steady-state MOEA.  
2. It emphasizes non-dominated solutions. 
3. It maintains diversity in the archive by allowing 

only one solution to be present in each pre-
assigned hyper-box on the Pareto-optimal front. 

4. It is an elitist approach.   

4. Methodology 

185 companies listed in Tehran Stock Exchange 
(TSE) were selected from a total population 452 
companies. The financial data of these companies 
for a three-year period (2009-2011) comprised the 
input data. After initial processing in Excel 
Software, the data were imported into MATLAB for 
further analyses. First the shares of each of these 
companies were assigned a weight from 1 to 100. 
After determining the weights of companies, a 10-
share optimal portfolio was generated from 185 
companies. The constraints of the problem were: 

1. The sum of ratios (weights) equals 1 
2. Second constraint: There are exactly 10 assets 

in each portfolio (𝑘 = 10) 
3. Third constraint: If an asset is placed in the 

portfolio then 𝛿𝑖 = 1 and its weight lies between 
𝑙𝑖 and 𝑢𝑖; if the assets is not placed in the portfolio 
then 𝛿𝑖 = 0 and its weight will be zero.  

Satisfaction of constraints: 
 
1. Beginning the algorithm 
2. Problem parameters: At this stage the 

parameters and the main problem are examined. 
• Reading the problem: 𝜎, 𝜇, sample size, K = 10, 

and 𝑙𝑖 and 𝑢𝑖 as the lower and upper bounds of 
the portfolio that take a vale from 0.01 to 1.  

• Calculating risk which obtained from the 
covariance of the expected returns of each 
company. Therefore, a 50 × 185 matrix is 
created with entries that correspond to these 
expected returns.  

• Determining the initial population with 50 
random chromosomes. 

• The iteration process must be five times the 
initial population. 

• Two objective functions 𝑓1 and 𝑓2  

min 𝑝(𝑥) = ∑ ∑ 𝑥𝑖𝑥𝑗𝛿𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

max 𝜇(𝑥) = ∑ 𝑥𝑖𝜇𝑖

𝑛

𝑖=1

 

• The genes in each chromosome is 185 (𝑁 =
185) 

3. Initial population: 50 initial offspring are 
randomly selected. First the 50 × 185 matrix is 



162 |   J .  H u m .  I n s .  2 0 1 7 ;  1 ( 4 ) :  1 5 8 - 1 6 3  

generated where 50 is the number of 
chromosomes and 185 is the number of 
companies. The entries in this matrix are random 
weights between 0.01 and 1 (lower and upper 
bounds of the problem).  

 

𝑤1 = [

𝑥1×1 𝑥1×2 ⋯ 𝑥1×185

⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮

𝑥50×1 𝑥50×2 ⋯ 𝑥50×185

]

50×18

 

 
Then, 10 more weights are selected in each row and 
the rest of the entries are zeroed. Therefore, the 
second constraint on the number of portfolio 
shares is satisfied (K = 10).   

 

𝑤2 = [
0.5 0 0.3 ⋯

⋮ ⋱ ⋮
⋮ ⋱ ⋮

]

50×18

 

 
Then the binary matrix (∆) is created where 
companies with weight take a value of 1 and 
companies without weight take a value of 0.  

 

∆= [
1 0 0 1 1 0 1 ⋯
⋮ ⋮ ⋮
⋮ ⋮ ⋮

]

50×185

 

 
Now the initial population is evaluated. The 
evaluation rate is calculated as follows: 

 

𝑋 = li. 𝛿 +
𝑤. 𝛿

∑ 𝑤. 𝛿𝑛
𝑖=1

(1 − ∑ 𝑙. 𝛿)

𝑛

𝑖=1

. 𝑖 = 1. … . 𝑛 

 

This rate calculates the real weights of the portfolio 
whose sum equals 1 (the first constraint).  
 

Table 1. The parameters of 𝜖-MOEA. 
 

Parameter Value 

Initial population 50 

Crossover 
Single-point 
crossover 

Mutation rate 0.01 

Number of iterations 250 

Time constraint and delay 485,125 

Maximum number of 
generations 

Unlimited 

Constraint on accuracy 
variation of the objective 
function 

10-3 

 

Considering the objective function and the defined 
constraints, a portfolio is generated from the 
superior shares which not only has the maximum 
expected return, but also minimizes risk. 
Figure 5 displays the approximate shape of the 
efficient frontier obtained through the proposed 
procedure along with the cardinality constrained 
efficient frontier (TCCEF). TCCEF contains 185 
efficient points that have been calculated using the 
model and algorithm explained earlier. It can be 

observed that 𝜖-MOEA has calculated the efficient 
frontier in a way that approximates the efficient 
points obtained from the mathematical method 
(Figure 5). 

 

 

Figure 5. The efficient frontier obtained from TCCEF and 𝜖-MOEA. 

 

5. Conclusion 

The present research is in the area of accounting 
and is carried out based on the stock market data 
and financial statements of companies. First, the 
data were collected from the software provided by 
Tehran Stock Exchange that contained the financial 
statements of the listed companies. Then, the data 
were analyzed in Excel and MATLAB applications. 
Finally, the optimal portfolio was generated suing 

MVCCPO and the efficient frontier was obtained 
using the standard Markowitz procedure as well as 

𝜖-MOEA. As can be seen in Figure 5, these efficient 
frontiers coincide, suggesting that the proposed 
algorithm has been successful in solving the 
portfolio optimization problem. 
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